Learning from the memory of Atari 2600
نویسندگان
چکیده
We train a number of neural networks to play games Bowling, Breakout and Seaquest using information stored in the memory of a video game console Atari 2600. We consider four models of neural networks which differ in size and architecture: two networks which use only information contained in the RAM and two mixed networks which use both information in the RAM and information from the screen. As the benchmark we used the convolutional model proposed in [12] and received comparable results in all considered games. Quite surprisingly, in the case of Seaquest we were able to train RAM-only agents which behave better than the benchmark screen-only agent. Mixing screen and RAM did not lead to an improved performance comparing to screen-only and RAM-only agents.
منابع مشابه
Deep Q-Learning with Prioritized Sampling
The combination of modern reinforcement learning and deep learning approaches brings significant breakthroughs to a variety of domains requiring both rich perception of high-dimensional sensory inputs and policy selection. A recent significant breakthrough in using deep neural networks as function approximators, termed Deep Q-Networks (DQN), proves to be very powerful for solving problems appro...
متن کاملAsynchronous Deep Q-Learning for Breakout with RAM inputs
We implemented Asynchronous Deep Q-learning to learn the Atari 2600 game Breakout with RAM inputs. We tested the performance of the our agent by varying network structure, training policy, and environment settings. We saw the he most notable improvement through changing the environment settings. Furthermore, we observed interesting training effects when we used a Boltzmann-Q Policy that encoura...
متن کاملInvestigating Contingency Awareness Using Atari 2600 Games
Contingency awareness is the recognition that some aspects of a future observation are under an agent’s control while others are solely determined by the environment. This paper explores the idea of contingency awareness in reinforcement learning using the platform of Atari 2600 games. We introduce a technique for accurately identifying contingent regions and describe how to exploit this knowle...
متن کاملPairwise Relative Offset Features for Atari 2600 Games
We introduce a novel feature set for reinforcement learning in visual domains (e.g. video games) designed to capture pairwise, position-invariant, spatial relationships between objects on the screen. The feature set is simple to implement and computationally practical, but nevertheless allows for substantial improvement over existing baselines in a wide variety of Atari 2600 games. In the most ...
متن کاملThe Impact of Determinism on Learning Atari 2600 Games
Pseudo-random number generation on the Atari 2600 was commonly accomplished using a Linear Feedback Shift Register (LFSR). One drawback was that the initial seed for the LFSR had to be hard-coded into the ROM. To overcome this constraint, programmers sampled from the LFSR once per frame, including title and end screens. Since a human player will have some random amount of delay between seeing t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1605.01335 شماره
صفحات -
تاریخ انتشار 2016